题目内容
【题目】已知函数(a为实数).
(1) 若函数在处的切线与直线平行,求实数a的值;
(2) 若,求函数在区间上的值域;
(3) 若函数在区间上是增函数,求a的取值范围.
【答案】(1) (2)(3).
【解析】试题分析:(1)由导数几何意义得切线斜率为得方程,解得实数a的值;(2)先求导数,再求导函数零点,列表分析导函数符号变化规律,确定单调性,进而确定最值与值域(3)转化为 对于1≤≤3恒成立,再分离变量得最大值,最后根据函数最值得的取值范围
试题解析:(1) , ,解得.
(2)时, ,
,令,解得或,
2 | |||
— | 0 | + | |
减函数 | 极小值 | 增函数 |
又, , ,所以在上的值域为.
(3),由在区间上是增函数,
则 对于1≤≤3恒成立,所以.
因,故,记,则,
而函数在上为减函数,则,所以 4.
所以的取值范围是.
【题目】学校从参加高一年级期中考试的学生中抽出名学生,并统计了她们的数学成绩(成绩均为整数且满分为分),数学成绩分组及各组频数如下:
样本频率分布表:
分组 | 频数 | 频率 |
合计 |
(1)在给出的样本频率分布表中,求的值;
(2)估计成绩在分以上(含分)学生的比例;
(3)为了帮助成绩差的学生提高数学成绩,学校决定成立“二帮一”小组,即从成绩在的学生中选两位同学,共同帮助成绩在中的某一位同学.已知甲同学的成绩为分,乙同学的成绩为分,求甲、乙两同学恰好被安排在同一小组的概率.
【题目】为响应党中央“扶贫攻坚”的号召,某单位指导一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2018年种植的一批试验紫甘薯在不同温度时6组死亡的株数:
温度(单位:℃) | 21 | 23 | 24 | 27 | 29 | 32 |
死亡数(单位:株) | 6 | 11 | 20 | 27 | 57 | 77 |
经计算:,,,.
其中分别为试验数据中的温度和死亡株数,.
(1)与是否有较强的线性相关性? 请计算相关系数(精确到)说明.
(2)并求关于的回归方程(和都精确到);
(3)用(2)中的线性回归模型预测温度为时该批紫甘薯死亡株数(结果取整数).
附:对于一组数据,,……,,
①线性相关系数,通常情况下当大于0.8时,认为两
个变量有很强的线性相关性.
②其回归直线的斜率和截距的最小二乘估计分别为:
;