题目内容
【题目】“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量Q(简称血酒含量,单位是毫克/100毫升),当20≤Q≤80时,为酒后驾车;当Q>80时,为醉酒驾车.某市交通管理部门于某天晚上8点至11点设点进行一次拦查行动,共依法查出了60名饮酒后违法驾驶机动车者,如图为这60名驾驶员抽血检测后所得结果画出的频率分布直方图(其中Q≥140的人数计入120≤Q<140人数之内).
(1)求此次拦查中醉酒驾车的人数;
(2)从违法驾车的60人中按酒后驾车和醉酒驾车利用分层抽样抽取8人做样本进行研究,再从抽取的8人中任取3人,求3人中含有醉酒驾车人数X的分布列和数学期望.
【答案】(1)15人;(2)渐近线.
【解析】试题分析:(1)由频率分布直方图得小长方形面积等于对应频率,再根据频数等于总数乘以频率得结果(2)先按分层抽样得含有醉酒驾车者人数,再确定随机变量,利用组合数逐个求对应概率,列表可得分布列,最后根据数学期望公式求期望
试题解析:(1)由已知得,(0.003 2+0.004 3+0.005 0)×20=0.25,0.25×60=15,所以此次拦查中醉酒驾车的人数为15人.
(2)易知利用分层抽样抽取8人中含有醉酒驾车者为2人,所以X的所有可能取值为0,1,2.
P(X=0)==,P(X=1)==,
P(X=2)==,
X的分布列为
E(X)=0×+1×+2×=.
【题目】2016年一交警统计了某段路过往车辆的车速大小与发生的交通事故次数,得到如下表所示的数据:
车速 | |||||
事故次数 |
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(3)试根据(2)求出的线性回归方程,预测2017年该路段路况及相关安全设施等不变的情况下,车速达到时,可能发生的交通事故次数.
(参考数据:)
[参考公式:]