题目内容

如图,在三棱锥中,直线平面,且
,又点分别是线段的中点,且点是线段上的动点.
证明:直线平面
(2) 若,求二面角的平面角的余弦值.
(1)参考解析;(2)

试题分析:(1)点分别是线段的中点所以, 平面PAC.所以平面PAC.同理证明MN 平面PAC.又由于.所以平面QMN平面PAC.又平面QMN.所以直线平面
(2)根据已知条件建立坐标系,写出关键点的坐标,并写出相应的向量,计算平面QAN与 MAN的法向量,求法向量的夹角,即可得到结论.
(1).连结QM   因为点分别是线段的中点
所以QM∥PA     MN∥AC     QM∥平面PAC   MN∥平面PAC
因为MN∩QM=M  所以平面QMN∥平面PAC    QK平面QMN
所以QK∥平面PAC         7分
(2)方法1:过M作MH⊥AN于H,连QH,则∠QHM即为
二面角的平面角, 令
即QM=AM=1所以
此时sin∠MAH=sin∠BAN=   MH=   记二面角的平面角为
则tan=    COS=即为所求。        14分
方法2:以B为原点,以BC、BA所在直线为x轴y轴建空间直角坐标系,设
则A(0,2,0),M(0,1,0),N(1,0,0),p(0,2,2),Q(0,1,1),
="(0,-1,1),"   
,则
   
又平面ANM的一个法向量,所以cos=
即为所求。              14分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网