题目内容
已知
,函数![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407209804.png)
且
,
且
.
(1) 如果实数
满足
且
,函数
是否具有奇偶性? 如果有,求出相应的
值;如果没有,说明原因;
(2) 如果
,讨论函数
的单调性。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407193447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407209804.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407225442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407225377.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407240414.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407256443.png)
(1) 如果实数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407271422.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407349370.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407365424.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407381429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407396306.png)
(2) 如果
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407412586.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407381429.png)
(1)
时,函数
为奇函数;
时,函数
为偶函数.
(2)
时,
在
递增;
时,减区间
,增区间
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407443374.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407459463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407490363.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407459463.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407521415.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407459463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407537558.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407552424.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407583862.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407599871.png)
试题分析:(1)因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407365424.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407630774.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407646774.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407412586.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407677989.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240314076931261.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407521415.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407724569.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407459463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407537558.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407552424.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407724569.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407817859.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407833674.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407849576.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407864860.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407880694.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407895878.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407911866.png)
试题解析:(1)由题意得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407630774.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407646774.png)
若函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407459463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407973628.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407443374.png)
若函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407459463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031408036613.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407490363.png)
(2)由题意知:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407677989.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240314076931261.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407521415.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407724569.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407459463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407537558.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407552424.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407724569.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407817859.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407833674.png)
若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407849576.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407864860.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407880694.png)
增区间
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407895878.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407911866.png)
综上:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407521415.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407459463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407537558.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407552424.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407583862.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031407599871.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
题目内容