题目内容
(本小题满分12分)
已知曲线
上的点到点
的距离比它到直线
的距离小2.
(1)求曲线
的方程;
(2)曲线
在点
处的切线
与
轴交于点
.直线
分别与直线
及
轴交于点
,以
为直径作圆
,过点
作圆
的切线,切点为
,试探究:当点
在曲线
上运动(点
与原点不重合)时,线段
的长度是否发生变化?证明你的结论.
已知曲线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053943568224.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053943583524.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053943614442.png)
(1)求曲线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053943568224.png)
(2)曲线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053943568224.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053943661292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053943677287.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053943692282.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053943708299.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053943724433.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053943677287.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053943770332.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053943786535.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053943802517.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053943817308.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053943708299.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053943817308.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053943880306.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053943661292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053943568224.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053943661292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053943958393.png)
(1)
.(2)当点P在曲线
上运动时,线段AB的长度不变,证明见解析.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053943973520.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053943989215.png)
试题分析:(1)思路一:设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053944098586.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053943989215.png)
依题意可知曲线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053943989215.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053944176503.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053944192370.png)
得到曲线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053943989215.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053943973520.png)
思路二:设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053944098586.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053943989215.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240539443011111.png)
(2)当点P在曲线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053943989215.png)
由(1)知抛物线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053943989215.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053944363582.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053944410838.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053944426639.png)
应用导数的几何意义,确定切线的斜率,进一步得切线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053944457280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053944472791.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240539444881076.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053944504718.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240539445351085.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053944550995.png)
根据
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053944566592.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053944597888.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240539446131174.png)
由弦长,半径及圆心到直线的距离之关系,确定
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053944628581.png)
试题解析:解法一:(1)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053944098586.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053943989215.png)
依题意,点S到
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053944176503.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053944192370.png)
所以曲线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053943989215.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053944176503.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053944192370.png)
所以曲线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053943989215.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053943973520.png)
(2)当点P在曲线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053943989215.png)
由(1)知抛物线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053943989215.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053944363582.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053944410838.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053944426639.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053944894551.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053944457280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053944940846.png)
所以切线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053944457280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053944972839.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053944472791.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240539444881076.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053944504718.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240539445351085.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053944550995.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053944566592.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053944597888.png)
半径
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240539446131174.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240539452062620.png)
所以点P在曲线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053943989215.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240539452524246.jpg)
解法二:
(1)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053944098586.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053943989215.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240539443011111.png)
依题意,点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053944098586.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053945315430.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053945330457.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053945346891.png)
化简得,曲线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053943989215.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053943973520.png)
(2)同解法一.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目