题目内容
【题目】为了解甲、乙两个班级某次考试的数学成绩(单位:分),从甲、乙两个班级中分别随机抽取5名学生的成绩作样本,如图是样本的茎叶图,规定:成绩不低于120分时为优秀成绩.
(1)从甲班的样本中有放回的随机抽取2个数据,求其中只有一个优秀成绩的概率;
(2)从甲、乙两个班级的样本中分别抽取2名学生的成绩,记获优秀成绩的总人数为X,求X的分布列.
【答案】
(1)解:由茎叶图知甲班样本的5个数据中优秀成绩有2个,非优秀成绩有3个,
从甲班的样本中有放回的随机抽取2个数据,
基本事件总数n=5×5=25,
其中只有一个优秀成绩包含的基本事件个数为:
m=2×5+5×2=20,
∴其中只有一个优秀成绩的概率p= = =
(2)解:由茎叶图知甲班样本的5个数据中优秀成绩有2个,非优秀成绩有3个,
乙班样本的5个数据中优秀成绩有1个,非优秀成绩有4个,
∴X的可能取值为0,1,2,3,
P(X=0)= = ,
P(X=1)= = ,
P(X=2)= = ,
P(X=3)= = ,
∴X的分布列为:
X | 0 | 1 | 2 | 3 |
P |
【解析】(1)由茎叶图知甲班样本的5个数据中优秀成绩有2个,非优秀成绩有3个,由此能求出从甲班的样本中有放回的随机抽取2个数据,其中只有一个优秀成绩的概率.(2)由茎叶图知甲班样本的5个数据中优秀成绩有2个,非优秀成绩有3个,乙班样本的5个数据中优秀成绩有1个,非优秀成绩有4个,X的可能取值为0,1,2,3,分别求出相应的概率,由此能求出X的分布列.
【题目】我国的烟花名目繁多,花色品种繁杂.其中“菊花”烟花是最壮观的烟花之一,制造时一般是期望在它达到最高点时爆裂,通过研究,发现该型烟花爆裂时距地面的高度h(单位:米)与时间t(单位:秒)存在函数关系,并得到相关数据如下表:
时间t | 2 | 4 | |
高度h | 10 | 25 | 17 |
( I)根据上表数据,从下列函数中,选取一个函数描述该型烟花爆裂时距地面的高度h与时间t的变化关系:y1=kt+b,y2=at2+bt+c,y3=abt , 确定此函数解析式,并简单说明理由;
( II)利用你选取的函数,判断烟花爆裂的最佳时刻,并求出此时烟花距地面的高度.