题目内容

【题目】已知函数f(x)=x3+3x2﹣9x+3.求:
(1)f(x)的单调递增区间;
(2)f(x)的极值.

【答案】
(1)解:f′(x)=3x2+6x﹣9,解f′(x)≥0得:

x≥1,或x≤﹣3;

∴f(x)的单调递增区间为(﹣∞,﹣3],[1,+∞);


(2)解:x<﹣3时,f′(x)>0,﹣3<x<1时,f′(x)<0,x>1时,f′(x)>0;

∴x=﹣3时f(x)取极大值30,x=1时,f(x)取极小值﹣2.


【解析】(1)可求导数得到f′(x)=3x2+6x﹣9,而通过解f′(x)≥0即可得出函数f(x)的单调递增区间;(2)根据x的取值可以判断导数符号,这样由极值的概念便可得出函数f(x)的极值.
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减,以及对函数的极值与导数的理解,了解求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网