题目内容
【题目】已知是定义在区间内的单调函数,且对任意,都有,设为的导函数,,则函数的零点个数为( )
A. 0 B. 1 C. 2 D. 3
【答案】B
【解析】
设t=f(x)﹣lnx,则f(x)=lnx+t,又由f(t)=e+1,求出f(x)=lnx+e,从而求出g(x)的解析式,根据函数单调性求出函数的零点个数即可.
对任意的x∈(0,+∞),都有f[f(x)﹣lnx]=e+1,
又由f(x)是定义在(0,+∞)上的单调函数,则f(x)﹣lnx为定值,
设t=f(x)﹣lnx,则f(x)=lnx+t,
又由f(t)=e+1,即lnt+t=e+1,解得:t=e,
则f(x)=lnx+e,f′(x)=>0,
故g(x)=lnx+e﹣,则g′(x)=+>0,
故g(x)在(0,+∞)递增,
而g(1)=e﹣1>0,g()=﹣1<0,
存在x0∈(,1),使得g(x0)=0,
故函数g(x)有且只有1个零点,
故选:B.
【题目】在创建“全国文明卫生城”过程中,某市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次).通过随机抽样,得到参加问卷调查的1000人的得分(满分100分)统计结果如下表所示.
组别 | |||||||
频数 | 25 | 150 | 200 | 250 | 225 | 100 | 50 |
(1)由频数分布表可以大致认为,此次问卷调查的得分服从正态分布, 近似为这1000人得分的平均值值(同一组数据用该组数据区间的中点值表示),请用正态分布的知识求;
(2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案::
(ⅰ)得分不低于的可以获赠2次随机话费,得分低于的可以获赠1次随机话费;
(ⅱ)每次获赠送的随机话费和对应的概率为:
赠送的随机话费(单元:元) | 20 | 40 |
概率 | 0.75 | 0.25 |
现有市民甲要参加此次问卷调查,记 (单位:元)为该市民参加问卷调查获赠的话费,求的分布列与数学期望.
附:参考数据与公式
,若,则
①;
②;
③.