题目内容
【题目】抛物线的焦点为,点,为抛物线上一点,且不在直线上,则周长的最小值为____.
【答案】
【解析】
求△MAF周长最小值,即求|MA|+|MF|的最小值.设点M在准线上的射影为D,根据抛物线定义知|MF|=|MD|,转为求|MA|+|MD|的最小值,当D、M、A三点共线时|MA|+|MD|最小,即可得到答案.
求△MAF周长的最小值,即求|MA|+|MF|的最小值,
设点M在准线上的射影为D,则
根据抛物线的定义,可知|MF|=|MD|
因此,|MA|+|MF|的最小值,即|MA|+|MD|的最小值
根据平面几何知识,可得当D,M,A三点共线时|MA|+|MD|最小,
因此最小值为xA﹣(﹣1)=2+1=3,
∵|AF|==,
∴△MAF周长的最小值为3+,
故答案为:3+
练习册系列答案
相关题目