题目内容
【题目】已知函数f(x)=cos(2x-),x∈R.
(1)求函数f(x)的最小正周期和单调递减区间;
(2)求函数f(x)在区间[-,]上的最小值和最大值,并求出取得最值时x的值.
【答案】(1)π.,(2)最大值为,此时;最小值为,此时.
【解析】
试题分析:(1)首先分析题目中三角函数的表达式为标准型,则可以根据周期公式,递增区间直接求解即可;
(2)然后可以根据三角函数的性质解出函数的单调区间,再分别求出最大值最小值.
试题解析:
(1)f(x)的最小正周期T===π.
当2kπ≤2x-≤2kπ+π,即kπ+≤x≤kπ+,k∈Z时,f(x)单调递减,
∴f(x)的单调递减区间是[kπ+,kπ+],k∈Z.
(2)∵x∈[-,],则2x-∈[-,],
故cos(2x-)∈[-,1],
∴f(x)max=,此时2x-=0,即x=;
f(x)min=-1,此时2x-=,即x=
练习册系列答案
相关题目