题目内容
【题目】已知函数且点在函数的图象上.
(1)求函数的解析式,并在图中的直角坐标系中画出函数的图象;
(2)求不等式的解集;
(3)若方程有两个不相等的实数根,求实数的取值范围.
【答案】(1),图像见解析(2)(3)
【解析】
(1)将点代入中,即可求解的值,进而求得函数的解析式,画出函数f(x)的图象.
(2)分为两种情况分别求解不等式,再取并集即可得不等式的解集.
(3)欲求满足方程有两个不相等的实数根的取值范围,可使函数与有两个不同的交点,画出二者的图象即可判断出实数的取值范围.
解:(1)由的图象经过点,
可得,即,解得,
则,
函数的图象如下图:
(2)即为或,
即或,
则解集为;
(3)有两个不相等的实数根,
即有的图象和直线有两个交点,
由图象可得,即,
可得的取值范围是.
练习册系列答案
相关题目
【题目】某工厂生产甲、乙两种产品所得的利润分别为和(万元),事先根据相关资料得出它们与投入资金(万元)的数据分别如下表和图所示:其中已知甲的利润模型为,乙的利润模型为.(为参数,且).
(1)请根据下表与图中数据,分别求出甲、乙两种产品所得的利润与投入资金(万元)的函数模型
(2)今将万资金投入生产甲、乙两种产品,并要求对甲、乙两种产品的投入资金都不低于万元.设对乙种产品投入资金(万元),并设总利润为(万元),如何分配投入资金,才能使总利润最大?并求出最大总利润.