题目内容
7.已知集合A={x|x2=2},B={1,$\sqrt{2}$,2},则A∩B=( )A. | {$\sqrt{2}$} | B. | {2} | C. | {-$\sqrt{2}$,1,$\sqrt{2}$,2} | D. | {-2,1,$\sqrt{2}$,2} |
分析 根据集合的基本运算进行求解即可.
解答 解:A={x|x2=2}={-$\sqrt{2}$,$\sqrt{2}$},B={1,$\sqrt{2}$,2},
则A∩B={$\sqrt{2}$},
故选:A.
点评 本题主要考查集合的基本运算,比较基础.
练习册系列答案
相关题目
15.在同一坐标系中,将椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{25}$=1变换成单位圆的伸缩变换是( )
A. | φ:$\left\{\begin{array}{l}{x′=5x}\\{{y}^{′}=4y}\end{array}\right.$ | B. | φ:$\left\{\begin{array}{l}{{x}^{′}=4x}\\{{y}^{′}=5y}\end{array}\right.$ | ||
C. | φ:$\left\{\begin{array}{l}{{x}^{′}=\frac{1}{4}x}\\{{y}^{′}=\frac{1}{5}y}\end{array}\right.$ | D. | φ:$\left\{\begin{array}{l}{{x}^{′}=\frac{1}{5}x}\\{{y}^{′}=\frac{1}{4}y}\end{array}\right.$ |