题目内容
【题目】在一次数学测验后,班级学委对选答题的选题情况进行统计,如下表:
几何证 明选讲 | 极坐标与 参数方程 | 不等式 选讲 | 合计 | |
男同学 | 12 | 4 | 6 | 22 |
女同学 | 0 | 8 | 12 | 20 |
合计 | 12 | 12 | 18 | 42 |
(1)在统计结果中,如果把几何证明选讲和极坐标与参数方程称为“几何类”,把不等式选讲称为“代数类”,我们可以得到如下2×2列联表.
几何类 | 代数类 | 合计 | |
男同学 | 16 | 6 | 22 |
女同学 | 8 | 12 | 20 |
合计 | 24 | 18 | 42 |
能否认为选做“几何类”或“代数类”与性别有关,若有关,你有多大的把握?
(2)在原始统计结果中,如果不考虑性别因素,按分层抽样的方法从选做不同选答题的同学中随机选出7名同学进行座谈.已知这名学委和2名数学课代表都在选做“不等式选讲”的同学中.
①求在这名学委被选中的条件下,2名数学课代表也被选中的概率;
②记抽取到数学课代表的人数为,求的分布列及数学期望.
下面临界值表仅供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)答案见解析;(2)①.;②.答案见解析.
【解析】分析:(1)由题意知K2的观测值k≈4.582>3.841,则有95%的把握认为选做“几何类”或“代数类”与性别有关.
(2)①由题意结合条件概率计算公式可知在学委被选中的条件下,2名数学课代表也被选中的概率为;
②由题意知X的可能取值为0,1,2.由超几何分布计算相应的概率值可得其分布列,然后计算其数学期望为E(X)=.
详解:(1)由题意知K2的观测值k=≈4.582>3.841,
所以有95%的把握认为选做“几何类”或“代数类”与性别有关.
(2)①由题可知在选做“不等式选讲”的18名学生中,要选取3名同学,
令事件A为“这名学委被选中”,事件B为“两名数学课代表被选中”,
则,
,
②由题意知X的可能取值为0,1,2.
依题意P(X=0)=,P(X=1)==,P(X=2)=,
则其分布列为:
所以E(X)=0×+1×+2×=.
【题目】在国内汽车市场中,国产SUV出现了持续不退的销售热潮,2018年国产SUV销量排行榜完整版已经出炉,某品牌车型以惊人的销量成绩击退了所有虎视眈眈的对手,再次霸气登顶,下面是该品牌国产SUV分别在2017年与2018年7~11月份的销售量对比表
时间 | 7月 | 8月 | 9月 | 10月 | 11月 |
2017年(单位:万辆) | 2.8 | 3.9 | 3.5 | 4.4 | 5.4 |
2018年(单位:万辆) | 3.8 | 3.9 | 4.5 | 4.9 | 5.4 |
(Ⅰ)若从7月至11月中任选两个月份,求至少有一个月份这两年该国产品牌SUV销量相同的概率。
(Ⅱ)分别求这两年7月至11月的销售数据的平均数,并直接判断哪年的销售量比较稳定。