题目内容
【题目】下面命题中,正确的命题有( )
①若n1,n2分别是不同平面α,β的法向量,则n1∥n2α∥β;
②若n1,n2分别是平面α,β的法向量,则α⊥βn1·n2=0;
③若n是平面α的法向量,b,c是α内两个不共线的向量,a=λb+μc(λ,μ∈R),则n·a=0;
④若两个平面的法向量不垂直,则这两个平面一定不垂直.
A. 1个 B. 2个 C. 3个 D. 4个
【答案】C
【解析】分析:①由面面平行则法向量共线,反之则不然判断;②由面面垂直的定义判断;③由线面垂直的性质及向量共面定理判断;④由面面垂直的定义判断.
详解:①中由可得,由可得,平面与可能平行,也可能重合,故①不正确;
②,则二面角的平面角成,由圆的内接四边形对顶角互补知法向量垂直,反之当法向量垂直,则二面角成,由圆内接四边形对顶角互补,知两平面垂直,故②正确;
③由,知三向量共面,则在平面内或与平面平行,所以平面的法向量与直线垂直,故③正确;
④若两个平面的法向量不垂直,则所成角不是,则由内接四边形对顶角互补知两平面所成的角不是,故④正确.
故选:C.
【题目】在一次数学测验后,班级学委对选答题的选题情况进行统计,如下表:
几何证 明选讲 | 极坐标与 参数方程 | 不等式 选讲 | 合计 | |
男同学 | 12 | 4 | 6 | 22 |
女同学 | 0 | 8 | 12 | 20 |
合计 | 12 | 12 | 18 | 42 |
(1)在统计结果中,如果把几何证明选讲和极坐标与参数方程称为“几何类”,把不等式选讲称为“代数类”,我们可以得到如下2×2列联表.
几何类 | 代数类 | 合计 | |
男同学 | 16 | 6 | 22 |
女同学 | 8 | 12 | 20 |
合计 | 24 | 18 | 42 |
能否认为选做“几何类”或“代数类”与性别有关,若有关,你有多大的把握?
(2)在原始统计结果中,如果不考虑性别因素,按分层抽样的方法从选做不同选答题的同学中随机选出7名同学进行座谈.已知这名学委和2名数学课代表都在选做“不等式选讲”的同学中.
①求在这名学委被选中的条件下,2名数学课代表也被选中的概率;
②记抽取到数学课代表的人数为,求的分布列及数学期望.
下面临界值表仅供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |