题目内容
【题目】如图,在平面直角坐标系中,锐角α和钝角β的终边分别与单位圆交于A,B两点.
(I)若A,B两点的纵会标分别为 的值;
(II)已知点C是单位圆上的一点,且 的夹角θ.
【答案】解:(I)根据三角函数的定义,得sinα= ,sinβ= .由α是锐角,所以,cosα= . 由β为钝角可得 cosβ=﹣ .
所以,cos(β﹣α)=cosβcosα+sinβsinα=(﹣ )× + = .
(II)已知点C是单位圆上的一点,且 , ,
设 的夹角为θ,0≤θ≤π,则有 = .
展开化简可得 =﹣ .
可得cosθ= = =﹣ ,从而可得 θ= .
【解析】(I)根据三角函数的定义,求得sinα= ,sinβ= .由α是锐角、β为钝角可得cosα、cosβ的值,利用两角和与差的余弦公式求得cos(β﹣α)=cosβcosα+sinβsinα的值.(II)由题意可得 ,设 的夹角为θ,0≤θ≤π,则有 = .求出 的值,再利用两个向量的夹角公式求出cosθ,可得θ的值.
【题目】假设关于某设备的使用年限x(年)和所支出的维修费用y(万元)有如下的统计资料:
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)画出散点图并判断是否线性相关;
(2)如果线性相关,求线性回归方程;
(3)估计使用年限为10年时,维修费用是多少?
【题目】某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如图所示.
成绩分组 | 频数 | 频率 |
(160,165] | 5 | 0.05 |
(165,170] | ① | 0.35 |
(170,175] | 30 | ② |
(175,180] | 20 | 0.20 |
(180,185] | 10 | 0.10 |
合计 | 100 | 1 |
(1)请先求出频率分布表中①、②位置相应的数据,再画出频率分布直方图;
(2)为了能选拔出最优秀的学生,该高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官的面试,求第四组至少有一名学生被考官A面试的概率?