题目内容

已知数列{an}的前n项和为Sn3n1.

(1)求数列{an}的通项公式;

(2)bn (Sn1)求数列{bnan}的前n项和Tn.

 

1an2×3n12nN*

【解析】(1)n1a1S12

n≥2anSnSn1(3n1)(3n11)2×3n1综上所述an2×3n1.

(2)bn (Sn1)3n=-n所以bnan=-2n×3n1

Tn=-2×14×316×322n×3n1

3Tn=-2×314×322(n1)×3n12n×3n相减

2Tn=-2×12×312×322×3n12n×3n

=-2×(131323n1)2n×3n

所以Tn(131323n1)n×3nn×3n=-nN*

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网