题目内容
【题目】在平面直角坐标系中,已知点,,为动点,且直线与直线的斜率之积为.
(1)求动点的轨迹的方程;
(2)设过点的直线与曲线相交于不同的两点,.若点在轴上,且,求点的纵坐标的取值范围.
【答案】(1);(2).
【解析】
(1)设动点的坐标为,由题可得,化简即得动点的轨迹的方程;
(2)当直线的斜率不存在时,知点的纵坐标为0;当直线的斜率存在时,设直线的方程为,联立可得,依条件求出直线的垂直平分线,算出点的纵坐标,即可求出范围.
(1)设动点的坐标为,,依题意可知,
整理得,所以动点的轨迹的方程为
(2)当直线的斜率不存在时,满足条件的点的纵坐标为0;
当直线的斜率存在时,设直线的方程为.
将代入并整理得,
,
,
设,,则,
设的中点为,则,,
所以
由题意可知,
又直线的垂直平分线的方程为.
令解得,
当时,因为,所以,
当时,因为,所以,
综上所述,点纵坐标的取值范围是.
【题目】针对2019年“双十—”网上购物消费情况,规定:双十一当天购物消费金额不低于600元的网购者为“剁手党”,低于600元的网购者为“理智消费者”.某兴趣小组对双十一当天网购者随机抽取了100名进行抽样分析,得到如下统计图表(单位:人):
女性 | 男性 | 总计 | |
剁手党 | 50 | 5 | 55 |
理智购物者 | 30 | 15 | 45 |
总计 | 80 | 20 | 100 |
(1)根据以上统计数据回答能否在犯错误的概率不超过0.010的前提下认为“剁手党”与性别有关?
(2)现从抽取的80名女性网购者中按照分层抽样的方法选出8人,然后从选出8人中随机选出3人进行调查,选出的剁手党人数为2时的概率.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | ||
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
参考公式:,其中.
【题目】某研究机构对某校高二文科学生的记忆力x和判断力y进行统计分析,得下表数据.
x | 6 | 8 | 10 | 12 |
y | 2 | 3 | 5 | 6 |
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(3)试根据(2)中求出的线性回归方程,预测记忆力为14的学生的判断力.