题目内容
【题目】在直角坐标系中,直线,圆,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.
(1)求的极坐标方程;
(2)若直线的极坐标方程为,设的交点为A,B,求的面积.
【答案】(1),;(2).
【解析】
(1)由x=ρcosθ,y=ρsinθ,以及ρ2=x2+y2,可得C1,C2的极坐标方程;
(2)将代入C2的极坐标方程,可得|AB|,可得直角△C2AB的面积.
(1)因为x=ρcosθ,y=ρsinθ,所以C1的极坐标方程为ρcosθ=3,
圆C2:(x2)2+(y1)2=1即为x2+y24x2y+4=0,
可得C2的极坐标方程为.
(2)将代入ρ2-4ρcosθ-2ρsinθ+4=0,得,
解得.故,即.
由于C2的半径为1,所以直角△C2AB的面积为.
【题目】辽宁省六校协作体(葫芦岛第一高中、东港二中、凤城一中、北镇高中、瓦房店高中、丹东四中)中的某校文科实验班的名学生期中考试的语文、数学成绩都不低于分,其中语文成绩的频率分布直方图如图所示,成绩分组区间是:、、、、.
(1)根据频率分布直方图,估计这名学生语文成绩的中位数和平均数;(同一组数据用该区间的中点值作代表;中位数精确到)
(2)若这名学生语文成绩某些分数段的人数与数学成绩相应分数段的人数之比如下表所示:
分组区间 | ||||
从数学成绩在的学生中随机选取人,求选出的人中恰好有人数学成绩在的概率.
【题目】2019年6月25日,《固体废物污染环境防治法(修订草案)》初次提请全国人大常委会审议,草案对“生活垃圾污染环境的防治”进行了专章规定.草案提出,国家推行生活垃圾分类制度.为了了解人民群众对垃圾分类的认识,某市环保部门对该市市民进行了一次垃圾分类网络知识问卷调查,每一位市民仅有一次参加机会,通过随机抽样,得到参加问卷调查的1000人的得分(满分:100分)数据,统计结果如下表所示:
得分 | |||||||
频数 | 25 | 150 | 200 | 250 | 225 | 100 | 50 |
(1)由频数分布表可以认为,此次问卷调查的得分服从正态分布,近似为这1000人得分的平均值(同一组数据用该组区间的中点值作为代表),请利用正态分布的知识求;
(2)在(1)的条件下,市环保部门为此次参加问卷调查的市民制定如下奖励方案:
①得分不低于的可以获赠2次随机话费,得分低于的可以获赠1次随机话费;
②每次获赠的随机话费和对应的概率为:
获赠的随机话费(单位:元) | 20 | 40 |
概率 |
现市民小王要参加此次问卷调查,记(单位:元)为该市民参加问卷调查获赠的话费,求的分布列及数学期望.
附:①;
②若,则,,.