题目内容
【题目】已知函数.
(1)若,求的单调区间;
(2)若在区间上是增函数,求实数的取值范围.
【答案】(1)减区间为;增区间为;(2).
【解析】试题分析:
(1)当时, ,由可得函数的定义域为,结合图象可得函数的减区间为,增区间为。(2)令,分两种情况考虑。当时,若满足题意则在上单调递减,且;当时,若满足题意则在上单调递增,且。由此得到关于a的不等式组,分别解不等式组可得所求范围。
试题解析:
(1)当时, ,
由,得,
解得或,
所以函数的定义域为,
结合图象可得函数的减区间为,增区间为。
(2)令,则函数的图象为开口向上,对称轴为的抛物线,
①当时,
要使函数在区间上是增函数,则在上单调递减,且,
即,此不等式组无解。
②当时,
要使函数在区间上是增函数,则在上单调递增,且,
即,解得,
又,
∴,
综上可得.
所以实数的取值范围为。
练习册系列答案
相关题目
【题目】某城市城镇化改革过程中最近五年居民生活水平用水量逐年上升,下表是2011至2015年的统计数据:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 |
居民生活用水量(万吨) | 236 | 246 | 257 | 276 | 286 |
(1)利用所给数据求年居民生活用水量与年份之间的回归直线方程y=bx+a;
(2)根据改革方案,预计在2020年底城镇化改革结束,到时候居民的生活用水量将趋于稳定,预计该城市2023年的居民生活用水量.
参考公式: .