题目内容
如图,抛物线顶点在原点,圆x2+y2=4x的圆心是抛物线的焦点,直线l过抛物线的焦点,且斜率为2,直线l交抛物线与圆依次为A、B、C、D四点.
(1)求抛物线的方程.
(2)求|AB|+|CD|的值.
(1)求抛物线的方程.
(2)求|AB|+|CD|的值.
(1)由圆的方程x2+y2=4x,即(x-2)2+y2=4可知,圆心为F(2,0),
半径为2,又由抛物线焦点为已知圆的圆心,得到抛物线焦点为F(2,0),
抛物线方程为y2=8x.
(2)|AB|+|CD|=|AD|-|BC|
∵|BC|为已知圆的直径,∴|BC|=4,则|AB|+|CD|=|AD|-4.
设A(x1,y1)、D(x2,y2),
∵|AD|=|AF|+|FD|,而A、D在抛物线上,
由已知可知,直线l方程为y=2(x-2),
由
消去y,得x2-6x+4=0,
∴x1+x2=6.∴|AD|=6+4=10,
因此,|AB|+|CD|=10-4=6.
半径为2,又由抛物线焦点为已知圆的圆心,得到抛物线焦点为F(2,0),
抛物线方程为y2=8x.
(2)|AB|+|CD|=|AD|-|BC|
∵|BC|为已知圆的直径,∴|BC|=4,则|AB|+|CD|=|AD|-4.
设A(x1,y1)、D(x2,y2),
∵|AD|=|AF|+|FD|,而A、D在抛物线上,
由已知可知,直线l方程为y=2(x-2),
由
|
∴x1+x2=6.∴|AD|=6+4=10,
因此,|AB|+|CD|=10-4=6.
练习册系列答案
相关题目