题目内容
已知两点M(2,0)、N(-2,0),平面上动点P满足由|
|•|
|+
•
=0
(1)求动点P的轨迹C的方程.
(2)是否存在实数m使直线x+my-4=0(m∈R)与曲线C交于A、B两点,且OA⊥OB?若存在,求出m的取值范围;若不存在,请说明理由.
MN |
MP |
MN |
MP |
(1)求动点P的轨迹C的方程.
(2)是否存在实数m使直线x+my-4=0(m∈R)与曲线C交于A、B两点,且OA⊥OB?若存在,求出m的取值范围;若不存在,请说明理由.
(1)设P(x,y),由|
|•|
|+
•
=0,
得4
+(-4x-8)=0,
化简,得y2=8x,
∴点P的轨迹C的方程为y2=8x.
(2)设A(x1,y1),B(x2,y2),将x=4-my,代入C的方程,得y2=32-8my,
即y2+8my-32=0,
∴y1y2=-32,x1x2=
•
=16,
x1x2+y1y2=16,
∵OA⊥OB?x1x2+y1y2=0,
∴不存在实数m使OA⊥OB成立.
MN |
MP |
MN |
MP |
得4
(x-2)2+y2 |
化简,得y2=8x,
∴点P的轨迹C的方程为y2=8x.
(2)设A(x1,y1),B(x2,y2),将x=4-my,代入C的方程,得y2=32-8my,
即y2+8my-32=0,
∴y1y2=-32,x1x2=
y12 |
8 |
y22 |
8 |
x1x2+y1y2=16,
∵OA⊥OB?x1x2+y1y2=0,
∴不存在实数m使OA⊥OB成立.
练习册系列答案
相关题目