题目内容
【题目】已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)当时,证明:对任意的.
【答案】(1)见解析(2)见解析
【解析】试题分析:(Ⅰ)求出导函数,对参数a进行分类讨论,得出导函数的正负,判断原函数的单调性;(Ⅱ)整理不等式得ex-lnx-2>0,构造函数h(x)=ex-lnx-2,则可知函数h'(x)在(0,+∞)单调递增, 所以方程h'(x)=0在(0,+∞)上存在唯一实根x0,即得出函数的最小值为h(x)min=h(x0)=ex0lnx02=即ex﹣lnx﹣2>0在(0,+∞)上恒成立,即原不等式成立.
试题解析:
解:(Ⅰ)由题意知,函数f(x)的定义域为(0,+∞),
由已知得.
当a≤0时,f'(x)>0,函数f(x)在(0,+∞)上单调递增,
所以函数f(x)的单调递增区间为(0,+∞).
当a>0时,由f'(x)>0,得,由f'(x)<0,得,
所以函数f(x)的单调递增区间为,单调递减区间为.
综上,当a≤0时,函数f(x)的单调递增区间为(0,+∞);
当a>0时,函数f(x)的单调递增区间为,单调递减区间为.
(Ⅱ)证明:当a=1时,不等式f(x)+ex>x2+x+2可变为ex﹣lnx﹣2>0,令h(x)=ex﹣lnx﹣2,则,可知函数h'(x)在(0,+∞)单调递增,
而,
所以方程h'(x)=0在(0,+∞)上存在唯一实根x0,即.
当x∈(0,x0)时,h'(x)<0,函数h(x)单调递减;
当x∈(x0,+∞)时,h'(x)>0,函数h(x)单调递增; 所以.
即ex﹣lnx﹣2>0在(0,+∞)上恒成立,
所以对任意x>0,f(x)+ex>x2+x+2成立.
练习册系列答案
相关题目