题目内容
【题目】定义在R上的偶函数f(x)满足:对任意的x1 , x2∈(﹣∞,0)(x1≠x2),都有 <0.则下列结论正确的是( )
A.f(0.32)<f(20.3)<f(log25)
B.f(log25)<f(20.3)<f(0.32)
C.f(log25)<f(0.32)<f(20.3)
D.f(0.32)<f(log25)<f(20.3)
【答案】A
【解析】解:∵对任意x1 , x2∈(﹣∞,0),且x1≠x2 , 都有 <0, ∴f(x)在(﹣∞,0)上是减函数,
又∵f(x)是R上的偶函数,∴f(x)在(0,+∞)上是增函数,
∵0.32<20.3<log25
∴f(0.32)<f(20.3)<f(log25).
故选:A.
【考点精析】利用函数奇偶性的性质对题目进行判断即可得到答案,需要熟知在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇.
练习册系列答案
相关题目