题目内容
【题目】已知二次函数f(x)=x2+mx+n(m、n∈R)的两个零点分别在(0,1)与(1,2)内,则(m+1)2+(n﹣2)2的取值范围是( )
A.
B.
C.[2,5]
D.(2,5)
【答案】D
【解析】解:由于二次函数f(x)=x2+mx+n(m、n∈R)的两个零点
分别在(0,1)与(1,2)内,
则 即有 ,
在平面直角坐标系中,作出不等式组表示的区域,
而(m+1)2+(n﹣2)2表示的几何意义是点(﹣1,2)
到区域内的点的距离的平方,
求得点(﹣1,2)到直线m+n+1=0的距离为
= ,
点(﹣1,2)到点(﹣2,0)的距离为 ,
故(m+1)2+(n﹣2)2的取值范围是(2,5).
故选D.
【考点精析】掌握二次函数的性质是解答本题的根本,需要知道当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减.
练习册系列答案
相关题目
【题目】某研究所计划利用“神七”宇宙飞船进行新产品搭载实验,计划搭载新产品A、B,要根据该产品的研制成本、产品重量、搭载实验费用和预计产生收益来决定具体安排,通过调查,有关数据如表:
产品A(件) | 产品B(件) | ||
研制成本、搭载费用之和(万元) | 20 | 30 | 计划最大资金额300万元 |
产品重量(千克) | 10 | 5 | 最大搭载重量110千克 |
预计收益(万元) | 80 | 60 |
试问:如何安排这两种产品的件数进行搭载,才能使总预计收益达到最大,最大收益是多少?