题目内容
【题目】如图,在平面直角坐标系xOy中,以x轴正半轴为始边作锐角α,其终边与单位圆交于点A.以OA为始边作锐角β,其终边与单位圆交于点B,AB= .
(1)求cosβ的值;
(2)若点A的横坐标为 ,求点B的坐标.
【答案】
(1)解:在△AOB中,由余弦定理得,AB2=OA2+OB2﹣2OAOBcos∠AOB,
所以, = ,
即
(2)解:因为 , ,∴ .
因为点A的横坐标为 ,由三角函数定义可得, ,
因为α为锐角,所以 .
所以 , ,
即点 .
【解析】(1)由条件利用余弦定理,求得cosβ的值.(2)利用任意角的三角函数的定义,同角三角函数的基本关系,两角和差的正弦、余弦公式,求得点B的坐标.
练习册系列答案
相关题目
【题目】某测试团队为了研究“饮酒”对“驾车安全”的影响,随机选取100名驾驶员先后在无酒状态、酒后状态下进行“停车距离”测试.测试的方案:电脑模拟驾驶,以某速度匀速行驶,记录下驾驶员的“停车距离”(驾驶员从看到意外情况到车子停下所需的距离),无酒状态与酒后状态下的实验数据分别列于表1和表2.
表1:
停车距离(米) | |||||
频数 | 26 | 40 | 24 | 8 | 2 |
表2:
平均每毫升血液酒精含量(毫克) | 10 | 30 | 50 | 70 | 90 |
平均停车距离(米) | 30 | 50 | 60 | 70 | 90 |
请根据表1,表2回答以下问题.
(1)根据表1估计驾驶员无酒状态下停车距离的平均数;
(2)根据最小二乘法,由表2的数据计算关于的回归方程.
(3)该测试团队认为:驾驶员酒后驾车的“平均停车距离”大于(1)中无酒状态下的停车距离平均数的3倍,则认定驾驶员是“醉驾”.请根据(2)中的回归方程,预测当每毫升血液酒精含量大于多少毫克时为“醉驾”?参考公式:
,.