题目内容
2.如果定义在区间[3+a,5]上的函数f(x)为奇函数,那么a的值为-8.分析 根据奇函数的定义域关于原点对称的性质进行求解即可.
解答 解:∵函数f(x)是奇函数,
∴定义域关于原点对称,
则3+a+5=0,
解得a=-8,
故答案为:-8
点评 本题主要考查函数奇偶性的应用,利用定义域的对称性是解决本题的关键.
练习册系列答案
相关题目
12.在△ABC中,内角A,B,C所对应的边分别为a,b,c,若c2=(a-b)2+6,C=$\frac{π}{3}$,则△ABC的面积( )
A. | 3 | B. | $\frac{9\sqrt{3}}{2}$ | C. | $\frac{3\sqrt{3}}{2}$ | D. | 3$\sqrt{3}$ |
13.△ABC的内角A、B、C的对边分别为a、b、c.若a、b、c成等比数列且c=2a,则cosB=( )
A. | $\frac{3}{4}$ | B. | $\frac{1}{4}$ | C. | $\frac{{\sqrt{2}}}{4}$ | D. | $\frac{{\sqrt{7}}}{4}$ |
10.在复平面内,复数z=-2-3i对应的点位于( )
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
17.已知函数f(x)=Asin(ωx+φ)(ω>0),如果存在实数x1使得对任意的实数x,都有f(x1)≤f(x)≤
f(x1+2015)成立,则ω的最小值为( )
f(x1+2015)成立,则ω的最小值为( )
A. | $\frac{π}{2015}$ | B. | $\frac{1}{2015}$ | C. | $\frac{π}{4010}$ | D. | $\frac{1}{4010}$ |