题目内容
【题目】某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置. 若指针停在A区域返券60元;停在B区域返券30元;停在C区域不返券. 例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.
(1)若某位顾客消费128元,求返券金额不低于30元的概率;
(2)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为(元).求随机变量的分布列和数学期望.
【答案】
【解析】
试题分析:(1)由题意可知,A区扇形区域的圆心角为,根据几何概型可知,指针停在A区的概率为,同理可求指针落在B区域的概率为,指针落在C区域的概率为,所以若某位顾客消费128元,根据规则,可以转动一次转盘,若返券金额不低于30元,则指针落在A区域或落在B区域,而由于指针落在A区域或落在B区域为互斥事件,根据互斥事件概率加法公式,返券金额不低于30元的概率为;
(2)若某位顾客消费280,则可以转动2次转盘,那么他获得返券的金额X的所有可能取值为0,30,60,90,120,概率为,,,,。即得到X的分布列,然后可以根据公式求X的数学期望。
试题解析:设指针落在A,B,C区域分别记为事件A,B,C. 则
.
(1)若返券金额不低于30元,则指针落在A或B区域.即
所以消费128元的顾客,返券金额不低于30元的概率是.
(2)由题意得,该顾客可转动转盘2次,随机变量的可能值为0,30,60,90,120
所以,随机变量的分布列为:
0 | 30 | 60 | 90 | 120 | |
其数学期望
【题目】从某大学一年级女生中,选取身高分别是150cm、155cm、160cm、165cm、170cm的学生各一名,其身高和体重数据如表所示:
身高/cm () | 150 | 155 | 160 | 165 | 170 |
体重/kg () | 43 | 46 | 49 | 51 | 56 |
(1)求关于的线性回归方程;
(2)利用(1)中的回归方程,计算身高为168cm时,体重的估计值为多少?
参考公式:线性回归方程,其中,.
【题目】某学校高中毕业班有男生人,女生人,学校为了对高三学生数学学习情况进行分析,从高三年级按照性别进行分层抽样,抽取名学生成绩,统计数据如下表所示:
分数段(分) | 总计 | |||||
频数 |
(1)若成绩在分以上(含分),则成绩为及格,请估计该校毕业班平均成绩和及格学生人数;
(2)如果样本数据中,有60名女生数学成绩及格,请完成如下数学成绩与性别的列联表,并判断是否有的把握认为:“该校学生的数学成绩与性别有关”.
女生 | 男生 | 总计 | |
及格人数 | |||
不及格人数 | |||
总计 |
参考公式: