题目内容
已知棱长为1的正方体ABCD-A1B1C1D1中,E、F分别是B1C1和C1D1的中点,点A1到平面DBEF的距离 .
1
解析
在空间直角坐标系中,在轴上求一点C,使得点C到点与点的距离相等,则点C的坐标为
如图2,四边形为矩形,⊥平面,,作如图3折叠,折痕,其中点分别在线段上,沿折叠后点叠在线段上的点记为,并且⊥.(1)证明:⊥平面;(2)求三棱锥的体积.
如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC=60°,平面AA1C1C⊥平面ABCD,∠A1AC=60°.(1)证明:BD⊥AA1;(2)求锐二面角D-A1A-C的平面角的余弦值;(3)在直线CC1上是否存在点P,使BP∥平面DA1C1?若存在,求出点P的位置;若不存在,说明理由.
已知a=(1,1,1),b=(0,2,-1),c=ma+nb+(4,-4,1).若c与a及b都垂直,则m,n的值分别为 .
设A(1,2,-1),B(0,3,1),C(-2,1,2)是平行四边形的三个顶点,则此平行四边形的面积为
长方体中,AA1=AB=4,AD=2,E、F、G分别是DD1、AB、CC1的中点则直线A1E,FG所夹的角的余弦值为
已知向量,若则______。
已知,,设在线段上的一点满足=,则向量(为坐标原点)的坐标为 ;