题目内容
【题目】某公司为了解所经销商品的使用情况,随机问卷50名使用者,然后根据这50名的问卷评分数据,统计得到如图所示的频率布直方图,其统计数据分组区间为[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求频率分布直方图中a的值;
(2)求这50名问卷评分数据的中位数;
(3)从评分在[40,60)的问卷者中,随机抽取2人,求此2人评分都在[50,60)的概率.
【答案】(1)0.006;(2)76;(3).
【解析】
(1)由即可求得;(2)设中位数为,由即可求得;(3)先分别求出、内的人数,再按古典概型的概率计算公式计算即可.
(1)由频率分布直方图,可得(0.004+a+0.0156+0.0232+0.0232+0.028)×10=1,
解得a=0.006.
(2)由频率分布直方图,可设中位数为m,
则有(0.004+0.006+0.0232)×10+(m﹣70)×0.028=0.5,
解得中位数m=76.
(3)由频率分布直方图,可知在[40,50)内的人数:0.004×10×50=2,
在[50,60)内的人数:0.006×10×50=3.
设在[40,50)内的2人分别为a1,a2,在[50,60)内的3人分别为B1,B2,B3,
则从[40,60)的问卷者中随机抽取2人,基本事件有10种,分别为:
(a1,a2),(a1,B1),(a1,B2),(a1,B3),(a2,B1),
(a2,B2),(a2,B3),(B1,B2),(B1,B3),(B2,B3),
其中2人评分都在[50,60)内的基本事件有(B1,B2),(B1,B3),(B2,B3)共3种,
故此2人评分都在[50,60)的概率为.
【题目】某工厂用甲、乙两种不同工艺生产一大批同一种零件,零件尺寸均在[21.7,22.3](单位:cm)之间的零件,把零件尺寸在[21.9,22.1)的记为一等品,尺寸在[21.8,21.9)[22.1,22.2)的记为二等品,尺寸在[21.7,21.8)[22.2,22.3]的记为三等品,现从甲、乙工艺生产的零件中各随机抽取100件产品,所得零件尺寸的频率分布直方图如图所示:
(Ⅰ)根据上述数据完成下列2×2列联表,根据此数据你认为选择不同的工艺与一等品产出率是否有关?
甲工艺 | 乙工艺 | 总计 | |
一等品 | |||
非一等品 | |||
总计 |
P(K2≥k) | 0.1 | 0.05 | 0.01 |
k | 2.706 | 3.841 | 6.635 |
附:,其中.
(Ⅱ)以上述两种工艺中各种产品的频率作为相应产品产出的概率,若一等品、二等品、三等品的单件利润分别为30元、20元、15元,从一件产品的平均利润考虑,你认为以后该工厂应该选择哪种工艺生产该种零件?请说明理由.