题目内容
【题目】已知函数在一个周期内的简图如图所示,则函数的解析式为___________,方程的实根个数为__________.
【答案】 63
【解析】
利用函数的最值可求A;利用函数图像过可求;利用函数的周期可求,从而可求出解析式, 在同一坐标系内作出函数和函数的图象,的最大值为2,令得,在内求出交点个数即可.
解析显然,由图象过点,得,
即,又,所以,
又点在图象上,所以,即,
由图象可知,是图象在y轴右侧部分与x轴的第二个交点,
所以,解得,
所以函数的解析式为.
在同一坐标系内作出函数和函数的图象,
如图.
因为的最大值为2,令得.
令,得,
而,所以在内有31个形如的区间.
而在每一个区间上,函数和函数的图象都有2个交点,
故这两个图象在内有62个交点,另外在内还有1个交点.
所以方程共有63个实根.
故答案为:;63
【题目】海水受日月的引力,在一定的时候发生涨落的现象叫潮汐.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节某天时间与水深(单位:米)的关系表:
时刻 | 0:00 | 3:00 | 6:00 | 9:00 | 12:00 | 15:00 | 18:00 | 21:00 | 24:00 |
水深 | 10.0 | 13.0 | 9.9 | 7.0 | 10.0 | 13.0 | 10.1 | 7.0 | 10.0 |
(1)请用一个函数近似地描述这个港口的水深y与时间t的函数关系;
(2)一般情况下,船舶航行时,船底离海底的距离为5米或5米以上认为是安全的(船舶停靠时,船底只要不碰海底即可).某船吃水深度(船底离地面的距离)为6.5米.
①如果该船是旅游船,1:00进港,希望在同一天内安全出港,它至多能在港内停留多长时间(忽略进出港所需时间)?
②如果该船是货船,在2:00开始卸货,吃水深度以每小时0.5米的速度减少,由于台风等天气原因该船必须在10:00之前离开该港口,为了使卸下的货物尽可能多而且能安全驶离该港口,那么该船在什么整点时刻必须停止卸货(忽略出港所需时间)?
【题目】我校为了解学生喜欢通用技术课程“机器人制作”是否与学生性别有关,采用简单随机抽样的办法在我校高一年级抽出一个有60人的班级进行问卷调查,得到如下的列联表:
喜欢 | 不喜欢 | 合计 | |
男生 | 18 | ||
女生 | 6 | ||
合计 | 60 |
已知从该班随机抽取1人为喜欢的概率是.
(Ⅰ)请完成上面的列联表;
(Ⅱ)根据列联表的数据,若按90%的可靠性要求,能否认为“喜欢与否和学生性别有关”?请说明理由.
参考临界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:其中
【题目】某研究性学习小组为了调查研究学生玩手机对学习的影响,现抽取了30名学生,得到数据如表:
玩手机 | 不玩手机 | 合计 | |
学习成绩优秀 | 8 | ||
学习成绩不优秀 | 16 | ||
合计 | 30 |
已知在全部的30人中随机抽取1人,抽到不玩手机的概率为.
(1)请将2×2列联表补充完整;
(2)能否在犯错误的概率不超过0.005的前提下认为玩手机对学习有影响;
(3)现从不玩手机,学习成绩优秀的8名学生中任意选取两人,对他们的学习情况进行全程跟踪,记甲、乙两名学生被抽到的人数为X,求X的分布列和数学期望.
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
.