题目内容

如图所示,f(x)是定义在区间[-c,c](c>0)上的奇函数,令g(x)=af(x)+b,并有关于函数g(x)的四个论断:
①若a>0,对于[-1,1]内的任意实数m,n(m<n),
g(n)-g(m)
n-m
>0
恒成立;
②函数g(x)是奇函数的充要条件是b=0;
③若a≥1,b<0,则方程g(x)=0必有3个实数根;
④?a∈R,g(x)的导函数g′(x)有两个零点;
其中所有正确结论的序号是______.
①对于[-c,c]内的任意实数m,n(m<n),
g(n)-g(m)
n-m
>0
恒成立,由函数的图象可以看出,函数在[-1,1]内不是单调增函数,故命题不正确;
②若b=0,则函数g(x)是奇函数,此命题正确,b=0时,g(x)=af(x)是一个奇函数;
③若a≥1,b<0,则方程g(x)=0必有3个实数根,本题中没有具体限定b的范围,故无法判断g(x)=0有几个根;
④a=0时,g(x)=b,g′(x)=0,结论不成立.
综上②正确
故答案为②.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网