题目内容
【题目】在直角坐标系xOy中,以原点O为极点,x轴正半轴为极轴,建立极坐标系,已知曲线C的参数方程是 (θ为参数),曲线C与l的交点的极坐标为(2,
)和(2,
),
(1)求直线l的普通方程;
(2)设P点为曲线C上的任意一点,求P点到直线l的距离的最大值.
【答案】
(1)解:直线l与曲线交点的直角坐标分别是(2cos ,2sin
),(2cos
,2sin
),即(1,
),(
,1).
∴直线l的普通方程为 ,即x+y﹣
-1=0
(2)解:点P到直线l的距离d= =
.
∴当cosθ=﹣1时,d取得最大值 =
【解析】(1)将交点极坐标化为直角坐标,使用两点式方程得出l的普通方程;(2)将C的参数方程代入点到直线的距离公式,求出最大距离.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】某品牌汽车4S店,对该品牌旗下的A型、B型、C型汽车进行维修保养,每辆车一年内需要维修的人工费用为200元,汽车4S店记录了该品牌三种类型汽车各100辆到店维修的情况,整理得下表:
车型 | A型 | B型 | C型 |
频数 | 20 | 40 | 40 |
假设该店采用分层抽样的方法从上维修的100辆该品牌三种类型汽车中随机抽取10辆进行问卷回访.
(1)从参加问卷到访的10辆汽车中随机抽取两辆,求这两辆汽车来自同一类型的概率;
(2)某公司一次性购买该品牌A、B、C型汽车各一辆,记ξ表示这三辆车的一年维修人工费用总和,求ξ的分布列及数学期望(各型汽车维修的概率视为其需要维修的概率);
(3)经调查,该品牌A型汽车的价格与每月的销售量之间有如下关系:
价格(万元) | 25 | 23.5 | 22 | 20.5 |
销售量(辆) | 30 | 33 | 36 | 39 |
已知A型汽车的购买量y与价格x符合如下线性回归方程: =
x+80,若A型汽车价格降到19万元,请你预测月销售量大约是多少?