题目内容
【题目】已知双曲线的方程为,离心率,顶点到渐近线的距离为
(1)求双曲线的方程;
(2)设是双曲线上点,,两点在双曲线的两条渐近线上,且分别位于第一、二象限,若,求面积的取值范围.
【答案】(1)(2)
【解析】
(1)由顶点到渐近线距离、离心率和双曲线的关系可构造方程求得,进而得到双曲线方程;
(2)假设三点坐标,利用可表示出点坐标,代入双曲线方程整理可得;结合渐近线斜率和倾斜角的关系、同角三角函数和二倍角公式可求得,利用三角形面积公式可将所求面积化为关于的函数,利用对号函数的性质即可求得所求取值范围.
(1)由双曲线方程可知其渐近线方程为,顶点坐标
顶点到渐近线距离
由得: 双曲线的方程为:
(2)由(1)知:双曲线渐近线方程为
设,,,其中,
则,
由得:
,整理可得:
设
,
又,
当时,在上单调递减,在上单调递增
,
即面积的取值范围为
【题目】有甲、乙两家公司都需要招聘求职者,这两家公司的聘用信息如下:
甲公司 | 乙公司 | |||||||||
职位 | A | B | C | D | 职位 | A | B | C | D | |
月薪/元 | 6000 | 7000 | 8000 | 9000 | 月薪/元 | 5000 | 7000 | 9000 | 11000 | |
获得相应职位概率 | 0.4 | 0.3 | 0.2 | 0.1 | 获得相应职位概率 | 0.4 | 0.3 | 0.2 | 0.1 | |
(1)根据以上信息,如果你是该求职者,你会选择哪一家公司?说明理由;
(2)某课外实习作业小组调查了1000名职场人士,就选择这两家公司的意愿做了统计,得到以下数据分布:
选择意愿 人员结构 | 40岁以上(含40岁)男性 | 40岁以上(含40岁)女性 | 40岁以下男性 | 40岁以下女性 |
选择甲公司 | 110 | 120 | 140 | 80 |
选择乙公司 | 150 | 90 | 200 | 110 |
若分析选择意愿与年龄这两个分类变量,计算得到的K2的观测值为k1=5.5513,测得出“选择意愿与年龄有关系”的结论犯错误的概率的上限是多少?并用统计学知识分析,选择意愿与年龄变量和性别变量哪一个关联性更大?
附:
0.050 | 0.025 | 0.010 | 0.005 | |
3.841 | 5.024 | 6.635 | 7.879 |