题目内容
【题目】有甲、乙两家公司都需要招聘求职者,这两家公司的聘用信息如下:
甲公司 | 乙公司 | |||||||||
职位 | A | B | C | D | 职位 | A | B | C | D | |
月薪/元 | 6000 | 7000 | 8000 | 9000 | 月薪/元 | 5000 | 7000 | 9000 | 11000 | |
获得相应职位概率 | 0.4 | 0.3 | 0.2 | 0.1 | 获得相应职位概率 | 0.4 | 0.3 | 0.2 | 0.1 | |
(1)根据以上信息,如果你是该求职者,你会选择哪一家公司?说明理由;
(2)某课外实习作业小组调查了1000名职场人士,就选择这两家公司的意愿做了统计,得到以下数据分布:
选择意愿 人员结构 | 40岁以上(含40岁)男性 | 40岁以上(含40岁)女性 | 40岁以下男性 | 40岁以下女性 |
选择甲公司 | 110 | 120 | 140 | 80 |
选择乙公司 | 150 | 90 | 200 | 110 |
若分析选择意愿与年龄这两个分类变量,计算得到的K2的观测值为k1=5.5513,测得出“选择意愿与年龄有关系”的结论犯错误的概率的上限是多少?并用统计学知识分析,选择意愿与年龄变量和性别变量哪一个关联性更大?
附:
0.050 | 0.025 | 0.010 | 0.005 | |
3.841 | 5.024 | 6.635 | 7.879 |
【答案】(1)见解析;(2)见解析
【解析】
(1)分别求出两家公司的月薪的期望E(X)、E(Y),经计算E(X)=E(Y),再求出两家公司的月薪的方差,D(X)<D(Y),比较这些数据即可作出选择;(2)由k1=5.5513>5.024,结合表中对应值,可以得出“选择意愿与年龄有关系”的结论的犯错的概率的上限,由题中数据可以得到选择意愿与性别两个分类变量的2×2列联表,求出对应的K2,可得出结论“选择意愿与性别有关”的犯错误的概率的上限,从而可知选择意愿与性别关联性更大。
(1)设甲公司与乙公司的月薪分别为随机变量X,Y,
则E(X)=6000×0.4+7000×0.3+8000×0.2+9000×0.1=7000,
E(Y)=5000×0.4+7000×0.3+9000×0.2+11000×0.1=7000,
D(X)=(6000﹣7000)2×0.4+(7000﹣7000)2×0.3+(8000﹣7000)2×0.2+(9000﹣7000)2×0.1=10002,
D(Y)=(5000﹣7000)2×0.4+(7000﹣7000)2×0.3+(9000﹣7000)2×0.2+(11000﹣7000)2×0.1=20002,
则E(X)=E(Y),D(X)<D(Y),
我希望不同职位的月薪差距小一些,故选择甲公司;
或我希望不同职位的月薪差距大一些,故选择乙公司;
(2)因为k1=5.5513>5.024,根据表中对应值,
得出“选择意愿与年龄有关系”的结论犯错的概率的上限是0.025,
由数据分布可得选择意愿与性别两个分类变量的2×2列联表如下:
选择甲公司 | 选择乙公司 | 总计 | |
男 | 250 | 350 | 600 |
女 | 200 | 200 | 400 |
总计 | 450 | 550 | 1000 |
计算K2=≈6.734,
且K2=6.734>6.635,
对照临界值表得出结论“选择意愿与性别有关”的犯错误的概率上限为0.01,
由0.01<0.025,所以与年龄相比,选择意愿与性别关联性更大.
【题目】为考察某种药物预防疾病的效果,进行动物试验,调查了 105 个样本,统计结果为:服药的共有 55 个样本,服药但患病的仍有 10 个样本,没有服药且未患病的有 30个样本.
(1)根据所给样本数据完成 列联表中的数据;
(2)请问能有多大把握认为药物有效?
(参考公式:独立性检验临界值表
概率 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
患病 | 不患病 | 合计 | |
服药 | |||
没服药 | |||
合计 |