题目内容
【题目】如图,已知四边形的直角梯形,∥BC,,,,为线段的中点,平面,,为线段上一点(不与端点重合).
(1)若,
(ⅰ)求证:PC∥平面;
(ⅱ)求平面与平面所成的锐二面角的余弦值;
(2)否存在实数满足,使得直线与平面所成的角的正弦值为,若存在,确定的值,若不存在,请说明理由.
【答案】(1)(ⅰ)证明见解析(ⅱ)(2)存在,
【解析】
(1)(i)连接交于点,连接,,依题意易证四边形为平行四边形,从而有,,由此能证明PC∥平面
(ii)推导出,以为原点建立空间直角坐标系,利用向量法求解;
(2)设,求出平面的法向量,利用向量法求解.
(1)(ⅰ)证明:连接交于点,连接,,
因为为线段的中点,
所以,
因为,所以
因为∥
所以四边形为平行四边形.
所以
又因为,
所以
又因为平面,平面,
所以平面.
(ⅱ)解:如图,在平行四边形中
因为,,
所以
以为原点建立空间直角坐标系
则,,,
所以,,,
平面的法向量为
设平面的法向量为,
则,即,取,得,
设平面和平面所成的锐二面角为,则
所以锐二面角的余弦值为
(2)设
所以,,
设平面的法向量为,则
,取,得,
因为直线与平面所成的角的正弦值为,
所以
解得
所以存在满足,使得直线与平面所成的角的正弦值为.
【题目】最新研究发现,花太多时间玩手机游戏的儿童,患多动症的风险会加倍.青少年的大脑会很快习惯闪烁的屏幕、变幻莫测的手机游戏,一旦如此,他们在教室等视觉刺激较少的地方,就很难集中注意力.研究人员对110名年龄在7岁到8岁的儿童随机调查,并在孩子父母的帮助下记录了他们在1个月里玩手机游戏的习惯.同时,教师记下这些孩子出现的注意力不集中问题.统计得到下列数据:
注意力不集中 | 注意力集中 | 总计 | |
不玩手机游戏 | 20 | 40 | 60 |
玩手机游戏 | 30 | 20 | 50 |
总计 | 50 | 60 | 110 |
(1)试估计7岁到8岁不玩手机游戏的儿童中注意力集中的概率;
(2)能否在犯错误的概率不超过0.010的前提下认为玩手机游戏与注意力集中有关系?
附表:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.840 | 5.024 | 6.635 | 7.879 | td style="width:27.75pt; border-top-style:solid; border-top-width:0.75pt; border-left-style:solid; border-left-width:0.75pt; padding:3.38pt 5.62pt; vertical-align:middle">
.