题目内容
【题目】观察下列等式: (sin )﹣2+(sin )﹣2= ×1×2;
(sin )﹣2+(sin )﹣2+(sin )﹣2+sin( )﹣2= ×2×3;
(sin )﹣2+(sin )﹣2+(sin )﹣2+…+sin( )﹣2= ×3×4;
(sin )﹣2+(sin )﹣2+(sin )﹣2+…+sin( )﹣2= ×4×5;
…
照此规律,
(sin )﹣2+(sin )﹣2+(sin )﹣2+…+(sin )﹣2= .
【答案】 n(n+1)
【解析】解:观察下列等式: (sin )﹣2+(sin )﹣2= ×1×2;
(sin )﹣2+(sin )﹣2+(sin )﹣2+sin( )﹣2= ×2×3;
(sin )﹣2+(sin )﹣2+(sin )﹣2+…+sin( )﹣2= ×3×4;
(sin )﹣2+(sin )﹣2+(sin )﹣2+…+sin( )﹣2= ×4×5;
…
照此规律(sin )﹣2+(sin )﹣2+(sin )﹣2+…+(sin )﹣2= ×n(n+1),
所以答案是: n(n+1)
【考点精析】解答此题的关键在于理解归纳推理的相关知识,掌握根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理.
练习册系列答案
相关题目