题目内容

2.根据奇数原理,排列数A${\;}_{n}^{m}$有如下性质:A${\;}_{n+1}^{m}$=A${\;}_{n}^{m}$+mA${\;}_{n}^{m-1}$,据此类比,组合数C${\;}_{n}^{m}$具有的相应性质是:C${\;}_{n+1}^{m}$=C${\;}_{n}^{m}$+${C}_{n}^{m-1}$.

分析 利用组合数公式进行,即可得出结论.

解答 解:∵C${\;}_{n+1}^{m}$=$\frac{(n+1)!}{m!(n+1-m)!}$,
C${\;}_{n}^{m}$+${C}_{n}^{m-1}$=$\frac{n!}{m!(n-m)!}+\frac{n!}{(m-1)!(n+1-m)!}$=$\frac{(n+1)!}{m!(n+1-m)!}$,
∴C${\;}_{n+1}^{m}$=C${\;}_{n}^{m}$+${C}_{n}^{m-1}$.
故答案为:C${\;}_{n}^{m}$+${C}_{n}^{m-1}$.

点评 本题考查了组合数的性质及其证明,考查组合数公式的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网