题目内容
【题目】已知f(x+4)+f(x-1)=x2-2x,其中f(x)是二次函数,求函数f(x)的解析式.
【答案】.
【解析】试题分析: f(x)是二次函数,设f(x)=ax2+bx+c(a≠0),由f(x+4)+f(x-1)=x2-2x代入,利用对应系数相等,可求出a,b和c的值,即可得到函数f(x)的解析式.
试题解析:
设f(x)=ax2+bx+c(a≠0),
则f(x+4)+f(x-1)=a(x+4)2+b(x+4)+c+a(x-1)2+b(x-1)+c=x2-2x.
整理得2ax2+(6a+2b)x+(17a+3b+2c)=x2-2x.
∴解得
∴.
点睛:本题考查函数的表示方法,属于基础题目.求函数解析式的一般方法主要有:待定系数法,配凑法,换元法,构造方程组法,赋值法等.已知函数类型时,比如一次函数,二次函数,反比例函数以及指数函数或者对数函数时,往往使用待定系数法设出函数的表达式,再利用已知条件带入求出参数的值.
练习册系列答案
相关题目
【题目】某公司即将推车一款新型智能手机,为了更好地对产品进行宣传,需预估市民购买该款手机是否与年龄有关,现随机抽取了50名市民进行购买意愿的问卷调查,若得分低于60分,说明购买意愿弱;若得分不低于60分,说明购买意愿强,调查结果用茎叶图表示如图所示.
(1)根据茎叶图中的数据完成列联表,并判断是否有95%的把握认为市民是否购买该款手机与年龄有关?
购买意愿强 | 购买意愿弱 | 合计 | |
20~40岁 | |||
大于40岁 | |||
合计 |
(2)从购买意愿弱的市民中按年龄进行分层抽样,共抽取5人,从这5人中随机抽取2人进行采访,记抽到的2人中年龄大于40岁的市民人数为,求的分布列和数学期望.
附:.