题目内容
【题目】已知全集I=R,集合A={x∈R|≤},集合B是不等式2|x+1|<4的解集,求A∩(CIB).
【答案】解:由A:≤,即≤0,
等价于,解得﹣3<x≤1.
∴A={x∈R|﹣3<x≤1};
又∵由2|x+1|<4,有2|x+1|<22 ,
∴|x+1|<2.
∴﹣2<x+1<2,即﹣3<x<1.
∴B={x∈R|﹣3<x<1}.
∵CIB={x∈R|x≤﹣3,或x≥1},
∴A∩(CIB)={1}.
【解析】分别求解分式不等式及指数不等式化简集合A,B,然后利用补集及交集运算得答案.
【考点精析】根据题目的已知条件,利用指、对数不等式的解法的相关知识可以得到问题的答案,需要掌握指数不等式的解法规律:根据指数函数的性质转化;对数不等式的解法规律:根据对数函数的性质转化.
练习册系列答案
相关题目
【题目】某中学将100名高二文科生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A,B两种不同的教学方式分别在甲、乙两个班进行教改实验.为了了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如下图).记成绩不低于90分者为“成绩优秀”.
(Ⅰ)根据频率分布直方图填写下面2×2列联表;
甲班(A方式) | 乙班(B方式) | 总计 | |
成绩优秀 | |||
成绩不优秀 | |||
总计 |
(Ⅱ)判断能否在犯错误的概率不超过0.05的前提下认为:“成绩优秀”与教学方式有关?
附:.
P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |