题目内容

【题目】已知过原点的动直线与圆相交于不同的两点 .

(1)求圆的圆心坐标;

(2)求线段的中点的轨迹的方程;

(3)是否存在实数,使得直线与曲线只有一个交点?若存在,求出的取值范围;若不存在,说明理由.

【答案】(1)(2)(3)

【解析】试题分析:(1)通过将圆的一般式方程化为标准方程即得结论;(2)设当直线的方程为y=kx,通过联立直线与圆的方程,利用根的判别式大于0、韦达定理、中点坐标公式及参数方程与普通方程的相互转化,计算即得结论;(3)通过联立直线与圆的方程,利用根的判别式=0及轨迹的端点与点(40)决定的直线斜率,即得结论

试题解析:(1)由

的圆心坐标为

2)设,则

为弦中点即

线段的中点的轨迹的方程为

3)由(2)知点的轨迹是以为圆心为半径的部分圆弧(如下图所示,不包括两端点),且,又直线过定点

当直线与圆相切时,由,又,结合上图可知当时,直线与曲线只有一个交点.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网