题目内容

如图,四棱锥的底面是矩形,
底面PBC边的中点,SB
平面ABCD所成的角为45°,且AD=2,SA=1.
(1)求证:平面SAP
(2)求二面角ASDP的大小.          
(1)见解析
(2)二面角ASDP的大小为
(1)因为底面
所以,∠SBASB与平面ABCD所成的角…………………….……….1分
由已知∠SBA=45°,所以AB=SA=1易求得,AP=PD=,……………………….2分
又因为AD=2,所以AD2=AP2+PD2,所以.………….…….3分
因为SA⊥底面ABCD,平面ABCD,
所以SAPD,               …………….……………………….…....4分
由于SAAP=A    所以平面SAP.…………………………….5分
(2)设QAD的中点,连结PQ,       ………………….………6分
由于SA⊥底面ABCD,且SA平面SAD,则平面SAD⊥平面PAD….7分
因为PQAD,所以PQ⊥平面SAD
QQRSD,垂足为R,连结PR,
由三垂线定理可知PRSD,
所以∠PRQ是二面角ASDP的平面角. …9分
容易证明△DRQ∽△DAS,则
因为DQ= 1,SA=1,,所以….……….10分
在Rt△PRQ中,因为PQ=AB=1,所以………11分
所以二面角ASDP的大小为.……………….…….…….12分
或:过A在平面SAP内作,且垂足为H,在平面SAD内作,且垂足为E,连接HE,平面SAP平面SPD…………7分
∴HE为AE在平面SPD内的射影,∴由三垂线定理得
从而是二面角ASDP的平面角……………………………….9分
中,,在中,
.        ………………………………….11分
即二面角的大小为……………………………12分
解法二:因为底面
所以,∠SBASB与平面ABCD所成的角…………………………………1分
由已知∠SBA=45°,所以AB=SA=1
建立空间直角坐标系(如图)
由已知,P为BC中点.
于是A(0,0,0)、B(1,0,0) 、P(1,1,0)、D(0,2,0)、S(0,0,1)
……..….2分
(1)易求得,
..………….…....3分
因为=0。
所以
由于APSP=P,所以平面SAP         ………….……………..….…5分
(2)设平面SPD的法向量为
,得  解得
所以                     ……………….…………….……….8分
又因为AB⊥平面SAD,所以是平面SAD的法向量,易得…9分
所以    ….………………….11分
所求二面角的大小为. ……………….……….…… 12分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网