题目内容
【题目】已知m、n是不重合的直线,α、β是不重合的平面,有下列命题:①若mα,n∥α,则m∥n;②若m∥α,m∥β,则α∥β;③若α∩β=n,m∥n,则m∥α且m∥β;④若m⊥α,m⊥β,则α∥β.其中真命题的个数是( )
A. 0B. 1C. 2D. 3
【答案】B
【解析】
根据平面与平面平行的判定与直线与平面平行的判定进行判定,需要寻找特例,进行排除即可.
①若mα,n∥α,则m与n平行或异面,故不正确;
②若m∥α,m∥β,则α与β可能相交或平行,故不正确;
③若α∩β=n,m∥n,则m∥α且m∥β,m也可能在平面内,故不正确;
④若m⊥α,m⊥β,则α∥β,垂直与同一直线的两平面平行,故正确,
故选B.
本题主要考查了立体几何中线面之间的位置关系及其中的公理和判定定理,也蕴含了对定理公理综合运用能力的考查,属中档题.
练习册系列答案
相关题目
【题目】郑州一中社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查.根据调查结果绘制的学生日均学习围棋时间的频率分布直方图:将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.
(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“围棋迷”与性别有关?
非围棋迷 | 围棋迷 | 合计 | |
男 | |||
女 | 10 | 55 | |
合计 |
(2)将上述调查所得到的频率视为概率.现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名学生中的“围棋迷”人数为.若每次抽取的结果是相互独立的,求的分布列,期望
附:,
0.05 | 0.01 | |
3.841 | 6.635 |