题目内容

已知正项数列{an},其前n项和Sn满足6Sn+3an+2,且a1a2a6是等比数列{bn}的前三项.
(1)求数列{an}与{bn}的通项公式;
(2)记Tna1bna2bn-1+…+anb1n∈N*,证明:3Tn+1=2bn+1an+1(n∈N*).
(1)an=3n-2,bn=4n-1(2)见解析
(1)∵6Sn+3an+2,①
∴6a1+3a1+2,解得a1=1或a1=2.
又6Sn-1+3an-1+2(n≥2), ②
由①-②,得6an=()+3(anan-1),即(anan-1)(anan-1-3)=0.
anan-1>0,∴anan-1=3(n≥2).
a1=2时,a2=5,a6=17,此时a1a2a6不成等比数列,∴a1≠2;
a1=1时,a2=4,a6=16,此时a1a2a6成等比数列,∴a1=1.
∴{an}是以1为首项3为公差的等差数列,{bn}是以1为首项4为公比的等比数列.
an=3n-2,bn=4n-1.
(2)由(1)得
Tn=1×4n-1+4×4n-2+…+(3n-5)×41+(3n-2)×40,  ③
∴4Tn=1×4n+4×4n-1+7×4n-2+…+(3n-2)×41.  ④
由④-③,得
3Tn=4n+3×(4n-1+4n-2+…+41)-(3n-2)=4n+12×-(3n-2)
=2×4n-(3n+1)-1=2bn+1an+1-1,
∴3Tn+1=2bn+1an+1(n∈N*).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网