题目内容
2.若α是第三象限角,化简$\sqrt{\frac{1+cosα}{1-cosα}}$$+\sqrt{\frac{1-cosα}{1+cosα}}$.分析 首先,根据同角三角函数基本关系式,并结合根式的性质求解即可.
解答 解:$\sqrt{\frac{1+cosα}{1-cosα}}$$+\sqrt{\frac{1-cosα}{1+cosα}}$
=$\sqrt{\frac{(1+cosα)^{2}}{(1+cosα)(1+cosα)}}$+$\sqrt{\frac{(1-cosα)^{2}}{(1+cosα)(1-cosα)}}$
=$\frac{1+cosα}{|sinα|}$+$\frac{1-cosα}{|sinα|}$
=$\frac{2}{|sinα|}$
=-$\frac{2}{sinα}$(α是第三象限角).
点评 本题重点考查了同角三角函数基本关系式、根式的性质等知识,属于中档题.
练习册系列答案
相关题目
13.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(0,1),$\overrightarrow{c}$=(-2,k),若($\overrightarrow{a}$+2$\overrightarrow{b}$)∥$\overrightarrow{c}$,则k=( )
A. | -8 | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | 8 |
17.设函数f(x)=logax,若不等式|f(x)|>1对任意x∈[2,+∞)恒成立,则实数a的取值范围是( )
A. | (0,$\frac{1}{2}$)∪(1,2) | B. | (0,$\frac{1}{2}$)∪(2,+∞) | C. | ($\frac{1}{2}$,1)∪(1,2) | D. | ($\frac{1}{2}$,1)∪(2,+∞) |
7.设函数f(x)=$\left\{\begin{array}{l}{asinx+2,x≥0}\\{{x}^{2}+2a,x<0}\end{array}\right.$(其中a∈R)的值域为S,若[1,+∞)⊆S,则a的取值范围是( )
A. | (-∞,$\frac{1}{2}$) | B. | [1,$\frac{3}{2}$]∪($\frac{7}{4}$,2] | C. | (-∞,$\frac{1}{2}$)∪[1,2] | D. | ($\frac{3}{2}$,+∞) |
13.在△ABC中,角A、B、C的对边分别是a、b、c,其中b=c=2,若函数f(x)=$\frac{1}{4}{x^3}-\frac{3}{4}x$的极大值是cosA,则△ABC的面积等于( )
A. | 1 | B. | $\sqrt{3}$ | C. | 2 | D. | 2$\sqrt{3}$ |