题目内容

【题目】如图,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,E为AB的中点.将△ADE与△BEC分别沿ED、EC向上折起,使A、B重合于点P,则三棱锥PDCE的外接球的体积为( )

A. B. C. D.

【答案】A

【解析】

根据等腰梯形的边长和角度,可知三角形都是等边三角形,故三棱锥是正三棱锥.利用正三棱锥的结构,设出球心的位置,利用勾股定理计算出外接球的半径,进而求得外接球的体积.

由于∠DAB=60°,则三棱锥P—DCE各边长度均为1,那么三棱锥P—DCE为正三棱锥,P点在底面DCE的投影为等边△DCE的中心,设中心为O,则有OD=OE=OC=,在直角△POD中,OP2=PD2OD2=,即OP=,由于外接球的球心必在OP上,设球心位置为O1,则O1P=O1D,设O1P=O1D=R,则在直角△OO1D中,+OD2=O1D2,则(OPO1P)2+OD2=O1D2,即(R)2+()2=R2,解得R=,故三棱锥P—DCE的外接球的体积为V=πR3=π.故选A.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网