题目内容
【题目】已知函数
(1)当时,求不等式的解集;
(2)若函数的值域为A,且,求a的取值范围.
【答案】(1)或(2)
【解析】
(1)分类讨论去绝对值即可;
(2)根据条件分a<﹣3和a≥﹣3两种情况,由[﹣2,1]A建立关于a的不等式,然后求出a的取值范围.
(1)当a=﹣1时,f(x)=|x+1|.
∵f(x)≤|2x+1|﹣1,∴当x≤﹣1时,原不等式可化为﹣x﹣1≤﹣2x﹣2,∴x≤﹣1;
当时,原不等式可化为x+1≤﹣2x﹣2,∴x≤﹣1,此时不等式无解;
当时,原不等式可化为x+1≤2x,∴x≥1,
综上,原不等式的解集为{x|x≤﹣1或x≥1}.
(2)当a<﹣3时,,
∴函数g(x)的值域A={x|3+a≤x≤﹣a﹣3}.
∵[﹣2,1]A,∴,∴a≤﹣5;
当a≥﹣3时,,
∴函数g(x)的值域A={x|﹣a﹣3≤x≤3+a}.
∵[﹣2,1]A,∴,∴a≥﹣1,
综上,a的取值范围为(﹣∞,﹣5]∪[﹣1,+∞).
【题目】为了响应绿色出行,某市推出了新能源分时租赁汽车,并对该市市民使用新能源租赁汽车的态度进行调查,得到有关数据如下表1:
表1
愿意使用新能源租赁汽车 | 不愿意使用新能源租赁汽车 | 总计 | |
男性 | 100 | 300 | |
女性 | 400 | ||
总计 | 400 |
其中一款新能源分时租赁汽车的每次租车费用由行驶里程和用车时间两部分构成:行驶里程按1元/公里计费;用车时间不超过30分钟时,按0.15元/分钟计费;超过30分钟时,超出部分按0.20元/分钟计费.已知张先生从家到上班地点15公里,每天上班租用该款汽车一次,每次的用车时间均在20~60分钟之间,由于堵车红绿灯等因素,每次的用车时间(分钟)是一个随机变量.张先生记录了100次的上班用车时间,并统计出在不同时间段内的频数如下表2:
表2
时间(分钟) | (20,30] | (30,40] | (40,50] | (50,60] |
频数 | 20 | 40 | 30 | 10 |
(1)请补填表1中的空缺数据,并判断是否有99.5%的把握认为该市市民对新能源租赁汽车的使用态度与性别有关;
(2)根据表2中的数据,将各时间段发生的频率视为概率,以各时间段的区间中点值代表该时间段的取值,试估计张先生租用一次该款汽车上班的平均用车时间;
附:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数与烧开一壶水所用时间的一组数据,且作了一定的数据处理(如下表),得到了散点图(如下图).
1.47 | 20.6 | 0.78 | 2.35 | 0.81 | -19.3 | 16.2 |
表中.
(1)根据散点图判断,与哪一个更适宜作烧水时间关于开关旋钮旋转的弧度数的回归方程类型?(不必说明理由)
(2)根据判断结果和表中数据,建立关于的回归方程;
(3)若旋转的弧度数与单位时间内煤气输出量成正比,那么为多少时,烧开一壶水最省煤气?
附:对于一组数据,,,其回归直线的斜率和截距的最小二乘估计分别为,.