题目内容
【题目】在平面直角坐标系中,动圆与圆外切,与圆内切.
(1)求动圆圆心的轨迹方程;
(2)直线过点且与动圆圆心的轨迹交于、两点.是否存在面积的最大值,若存在,求出的面积;若不存在,说明理由.
【答案】(1);(2)存在,面积的最大值为,理由见解析.
【解析】
(1)设动圆的半径为,利用几何关系转化两圆内切和外切的问题,可得出,可得知点的轨迹是以点、为焦点的椭圆,并设该椭圆的方程为,利用椭圆的定义求出的值,可求出的值,由此可得出动点的轨迹方程;
(2)设直线的方程为,设点、,将直线的方程与椭圆的方程联立,列出韦达定理,并计算出的面积关于的表达式,换元,利用双勾函数的单调性可得出面积的最大值.
(1)设点,动圆的半径为,
由题意知,,,
由椭圆定义可知,动圆圆心在以、为焦点的椭圆上,
设该椭圆的方程为,且,,.
由于圆内切于圆于点,则.
因此,动圆圆心的轨迹方程为;
(2)存在面积的最大值.
因为直线过点,可设直线的方程为或(舍).
则,整理得 .
由.
设点、,则,.
则,
因为.
设,则,则.
设在区间上为增函数,所以.
所以,当且仅当时取等号,即.
因此,面积的最大值为.
【题目】近年来,随着我国汽车消费水平的提高,二手车流通行业得到迅猛发展.某汽车交易市场对2017年成交的二手车交易前的使用时间(以下简称“使用时间”)进行统计,得到频率分布直方图如图1.
图1 图2
(1)记“在年成交的二手车中随机选取一辆,该车的使用年限在”为事件,试估计的概率;
(2)根据该汽车交易市场的历史资料,得到散点图如图2,其中(单位:年)表示二手车的使用时间,(单位:万元)表示相应的二手车的平均交易价格.由散点图看出,可采用作为二手车平均交易价格关于其使用年限的回归方程,相关数据如下表(表中,):
5.5 | 8.7 | 1.9 | 301.4 | 79.75 | 385 |
①根据回归方程类型及表中数据,建立关于的回归方程;
②该汽车交易市场对使用8年以内(含8年)的二手车收取成交价格的佣金,对使用时间8年以上(不含8年)的二手车收取成交价格的佣金.在图1对使用时间的分组中,以各组的区间中点值代表该组的各个值.若以2017年的数据作为决策依据,计算该汽车交易市场对成交的每辆车收取的平均佣金.
附注:①对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为;
②参考数据:.
【题目】某水果种植基地引进一种新水果品种,经研究发现该水果每株的产量(单位:)和与它“相近”的株数具有线性相关关系(两株作物“相近”是指它们的直线距离不超过),并分别记录了相近株数为0,1,2,3,4时每株产量的相关数据如下:
0 | 1 | 2 | 3 | 4 | |
15 | 12 | 11 | 9 | 8 |
(1)求出该种水果每株的产量关于它“相近”株数的回归方程;
(2)有一种植户准备种植该种水果500株,且每株与它“相近”的株数都为,计划收获后能全部售出,价格为10元,如果收入(收入=产量×价格)不低于25000元,则的最大值是多少?
(3)该种植基地在如图所示的直角梯形地块的每个交叉点(直线的交点)处都种了一株该种水果,其中每个小正方形的边长和直角三角形的直角边长都为,已知该梯形地块周边无其他树木影响,若从所种的该水果中随机选取一株,试根据(1)中的回归方程,预测它的产量的分布列与数学期望.
附:回归方程中斜率和截距的最小二乘法估计公式分别为:,.