题目内容
【题目】若冬季昼夜温差x(单位:)与某新品种反季节大豆的发芽数量y(单位:颗)具有线性相关关系,根据一组样本数据,用最小二乘法近似得到回归直线方程为,则下列结论中不正确的是( )
A.y与x具有正相关关系
B.回归直线过点
C.若冬季昼夜温差增加,则该新品种反季节大豆的发芽数约增加2.5颗
D.若冬季昼夜温差的大小为,则该新品种反季节大豆的发芽数一定是22颗
【答案】D
【解析】
根据线性回归方程的相关计算,结合题意,进行逐一分析即可.
因为回归直线的斜率为2.5,所以y与x具有正相关关系,A正确;
回归直线经过样本中心点,故过点,B正确;
冬季昼夜温差增加,则发芽数量的增加量即为回归直线方程的斜率,
则该新品种反季节大豆的发芽数约增加2.5颗,C正确;
回归直线方程只可预测,不是确定的值,故D错误.
故选:D.
练习册系列答案
相关题目
【题目】“大众创业,万众创新”是李克强总理在本届政府工作报告中向全国人民发出的口号.某生产企业积极响应号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据,如表所示:
试销单价(元) | 4 | 5 | 6 | 7 | 8 | 9 |
产品销量(件) | q | 84 | 83 | 80 | 75 | 68 |
已知,.
(Ⅰ)求出的值;
(Ⅱ)已知变量,具有线性相关关系,求产品销量(件)关于试销单价(元)的线性回归方程;
(Ⅲ)用表示用(Ⅱ)中所求的线性回归方程得到的与对应的产品销量的估计值.当销售数据对应的残差的绝对值时,则将销售数据称为一个“好数据”.现从6个销售数据中任取2个,求“好数据”至少有一个的概率.
(参考公式:线性回归方程中,的最小二乘估计分别为,)