题目内容

【题目】如图,直三棱柱ABC﹣A′B′C′中,AA′=2AC=2BC,E为AA′的中点,C′E⊥BE.
(1)求证:C′E⊥平面BCE;
(2)若AC=2,求三棱锥B′﹣ECB的体积.

【答案】
(1)证明:在矩形A′ACC′中,E为A′A中点且AA′=2AC,

∴EA=AC,EA′=A′C′,

∴∠AEC=∠A′EC=45°,

∴C′E⊥EC,

∵C′E⊥BE,CE∩BE=E,

∴C′E⊥平面BCE;


(2)解:∵B′C′∥BC,B′C′平面BCE,BC平面BCE,

∴B′C′∥平面BCE,

∴VB′ECB=VC′ECB

∵C′E⊥平面BCE,

∴C′E⊥BC,

∵BC⊥CC′,C′E∩CC′=C′,

∴BC⊥平面ACC′A′′∴BC⊥CE,

∵AC=2,

∴BC=2,EC=EC′=2

∴VB′ECB=VC′ECB= =


【解析】(1)证明C′E⊥EC,利用C′E⊥BE,CE∩BE=E,即可证明C′E⊥平面BCE;(2)利用等体积转化求三棱锥B′﹣ECB的体积.
【考点精析】解答此题的关键在于理解直线与平面平行的判定的相关知识,掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网