题目内容
【题目】曲线y=1+ 与直线kx﹣y﹣2k+5=0有两个交点时,实数k的取值范围是 .
【答案】
【解析】解:化简曲线y=1+ ,得x2+(y﹣1)2=4(y≥1)
∴曲线表示以C(0,1)为圆心,半径r=2的圆的上半圆.
∵直线kx﹣y﹣2k+5=0可化为y﹣5=k(x﹣2),
∴直线经过定点A(2,5)且斜率为k.
又∵半圆y=1+ 与直线kx﹣y﹣2k+5=0有两个相异的交点,
∴设直线与半圆的切线为AD,半圆的左端点为B(﹣2,1),
当直线的斜率k大于AD的斜率且小于或等于AB的斜率时,
直线与半圆有两个相异的交点.
由点到直线的距离公式,当直线与半圆相切时满足 =2,
解之得k= ,即kAD= .
又∵直线AB的斜率kAB=1,∴直线的斜率k的范围为k∈ .
所以答案是 .
【考点精析】解答此题的关键在于理解直线与圆的三种位置关系的相关知识,掌握直线与圆有三种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点.
【题目】为贯彻落实教育部6部门《关于加快发展青少年校园足球的实施意见》,全面提高我市中学生的体质健康水平,培养拼搏意识和团队精神,普及足球知识和技能,市教体局决定举行春季校园足球联赛.为迎接此次联赛,甲中学选拔了20名学生组成集训队,现统计了这20名学生的身高,记录入如表:(设ξ为随机变量)
身高(cm) | 168 | 174 | 175 | 176 | 178 | 182 | 185 | 188 |
人数 | 1 | 2 | 4 | 3 | 5 | 1 | 3 | 1 |
(1)请计算这20名学生的身高的中位数、众数,并补充完成下面的茎叶图;
(2)身高为185cm和188cm的四名学生分别记为A,B,C,D,现从这四名学生选2名担任正副门将,请利用列举法列出所有可能情况,并求学生A入选门将的概率.